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Method of random phase product state (RPPS) is proposed to calculate canonical ensemble average of quantum 

systems described with matrix product states and also with tensor network states in general. The RPPS method is an 
extension of the method of random phase state for the conventional full Hilbert space representation. The validity of the 
method is confirmed by comparing the average energy of N-site spin-1/2 antiferromagnetic Heisenberg chain model with 
open boundary conditions with the result of direct method (for up to N=14) and minimally entangled typical thermal state 
(METTS) method (for N=100). Numerical advantages of the RPPS method such as parallelization, combined calculation 
of thermal averages at different temperatures, parameters for controlling error are discussed. View point of self-averaging 
for the super-convergence of random state method is emphasized in addition to that of typicality. 
 

 
 
According to the textbook of statistical mechanics[1], 

physical quantities of the system in thermal equilibrium 
at inverse temperature 1/ Bk Tβ =  are calculated based 
on the canonical ensemble, in which each microscopic 
quantum state nφ  with energy nE   is realized according 

to the Gibbs probability nE
nP e β−∝ .Calculating 

physical quantities of quantum many body system at 
finite temperature is one of the most important problems 
in computational physics, which requires, however, 
formidable computational resources if direct 
diagonalization method is applied to large systems. 

There are two sources of the difficulty. First, the 
dimension of the state vector increases exponentially as 
the system size increases. For example, state vector of the 
spin one-half Heisenberg chain has dimension of 

2NM = where N is the number of spins [2]. This 
difficulty may be mitigated by using tensor network 
representation [3, 4] of quantum states, which efficiently 
represents physically meaningful states near the ground 
states using much less parameters than the conventional 
full Hilbert space representation.  

Second, the number of excited states to be included in 
the calculation increases exponentially as temperature 
increases. [1]. In contrast, at very low temperature, only 
few states close to the ground states contribute to the 
thermal average and these low lying states are efficiently 
calculated with Lanczos methods [5, 6]. To cope with the 
second difficulty, method of random state has been 
successfully applied to many problems (see [6] and 
references therein) and also discussed in terms of 
typicality[7-12]. Among them, method of random phase 
state [13-18] has superior property of smaller statistical 
fluctuation. The essence of random (phase) state method 
is sampling the entire Hilbert space with much smaller 
number of random states than the full basis set. So far, 
the method of random state has been used mostly with the 
full Hilbert space representation and only few authors 
used it with tensor network representation[7-10].  

In the following, the method of random state is 
reviewed and extended to tensor network representation 
using, as an example, matrix product state (MPS) [3, 4] 
of N-site spin-1/2 antiferromagnetic Heisenberg chain 
model with open boundary condition. However, 
extension to tensor network in general is straight forward. 

 
The Hamiltonian of N-site spin-1/2 antiferromagnetic 

Heisenberg chain with open boundary condition is 
defined as 
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where iS


 is spin-1/2 operator at site i. 
A quantum state of this system is expressed in the full 

Hilbert space representation as 
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where the tensor of rank N, 1 Nc cσ σ=σ  , is the 
components of φ  projected onto the complete 
orthonormal basis set 

 
 1 1 2 N Nσ σ σ σ σ= = ⊗ ⊗σ    

 (3) 
constructed as the direct product of eigenstates of local 
spin operator 

 
2zi i i iS σ σ σ=


  (4) 

with eigenvalues 1iσ = ± .  
In order to sample the entire Hilbert space, random 

state is defined [16] as 

 
1
M

ξΦ = ∑ σ

σ
σ   (5). 
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where ξ σ  is a set of independent and identically 
distributed (i.i.d.) complex random numbers that have the 
following statistical relations 
 0ξ =σ   (6) 

 '*
'ξ ξ δ=σ σ

σ σ   (7) 

 ' 0ξ ξ =σ σ   (8) 

where the double bracket and the asterisk indicate 
statistical average and complex conjugate, respectively.  

As a special case of such random numbers, random 
phase number is defined as 

 exp iξ θ =  
σ σ   (9) 

where θ σ  are M independent uniform real random 
numbers in the range [ )0,2π  where M=2N is the 
dimension of the full Hilbert space. Random state 
composed of random phase numbers is called random 
phase state [14, 16]. 

Then, normalization and completeness of random state 
are expressed as  

 | 1Φ Φ =   (10) 

or 
 1Φ Φ =   (11) 

in the special case of random phase state, and 
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respectively. Matrix element of operator X  gives the 
trace of X , 
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Fig. 1. Graphic representation of random state method: 
(a) normalization (10); (b) completeness (12); (c) trace 

(13). The double brackets indicate statistical average. 
Normalization factor of 1/M is omitted for clarity. 
 

Random state can be regarded as the quantum state at 
infinite temperature or 0β =  because all state is 
occupied with equal probability according to (10)-(13). 
Thermal state at inverse temperature β  is defined as  

 
/2( ) He ββ −Φ = Φ

  (14) 
and thermal average of physical quantity A with 
canonical ensemble is calculated as 
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 (15) 
The essence of the random state method is that the 

double summation in expectation value (13) is reduced to 
single summation in trace by using statistical relation(7) 
as illustrated in Fig.1. When statistical average 

XΦ Φ is calculated as sample average with 

sampleN  realizations of random states, the fluctuation of 

the average decreases as 
sample

X
N
δ

 according to the law 

of large numbers. The statistical fluctuation of 
XΦ Φ  for each realization of random state is given 

by 
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 (16) 
Therefore the magnitude of the fluctuation is expected as 
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. (17) 
According to the inequality 

 
24 2

1ξ ξ≥ =σ σ   

the second term of (17) becomes zero if and only if 

1ξ =σ for all σ . Since this condition is satisfied by 

random phase state, it will give the smallest fluctuation 
among the random states in the given basis set. In many 
cases, where X  is such as combinations of local 
operators, 

1 2
Xσ σ  is sparse (i.e. most of the matrix 



elements are zero) and the right hand side of (17) 
decreases rapidly as  

 
2 1 1 2 N

rand

X
N M

δ −∝ = =   (18) 

as system size N and the number of random numbers per 
sample randN  increases. This is self-averaging[16, 19]. 

Now let us extend the method of random state to tensor 
network representation. Here, Matrix Product State 
(MPS), a special form of tensor network decomposition 
of cσ , useful for one dimensional system, is used as an 
example. MPS is defined as
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 (19) 
where cσ  is decomposed into the product of N matrices

[ ]iA σ   of dimension χ  or bond dimension[3, 4]. The 

bond index iµ   runs from 1 to χ  with constraint 

0 1Nµ µ= =  due to the open boundary conditions. The 

2NM =  coefficients of cσ  in the full Hilbert space 
representation is reduced to ~2 2Nχ coefficients in MPS. 

If χ were exponentially large (i.e. 22 2NNχ ≈  ), MPS 
would have sufficient flexibility to express the exact state 
[4]. 

Random MPS is defined as  
1
M

ηΨ = ∑ σ

σ
σ   (20). 

where coefficient ησ   is defined by 
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 (21) 
with i.i.d. complex random numbers, [ ]i σ

µνξ , that satisfy 
the statistical relations,  

[ ] 0i σ
µνξ =   (22) 

[ ] '* [ ]
' ' ' ' '

i j
ij

σ σ
µ ν µν σ σ µ µ ν νξ ξ δ δ δ δ=  (23) 

[ ] ' [ ]
' ' 0i jσ σ

µ ν µνξ ξ =   (24). 

Random MPS composed of random phase numbers is 
called random phase MPS. 
Using (21)-(24), it is shown that ησ  satisfies statistical 
relations corresponding to (6)-(8), 

 0η =σ   (25) 

 '*
'η η δ=σ σ

σ σ   (26) 

 ' 0η η =σ σ   (27) 

although 2NM =  random numbers of ησ  are not 
independent of each other because they are composed of 
only 22 2NNχ  independent random numbers, [ ]i

µνξ σ . 
Therefore random MPS also satisfies all equations for the 
full Hilbert space representation including random 
variables up to quadratic order.  

Random Phase Product State (RPPS) is defined as 
random phase MPS with 1χ =  and regarded as quantum 
states at infinite temperature where all state realizes with 
equal probability and entanglement vanishes. Since it is a 
product state, RPPS is defined independent of the 
topology of tensor network. Topology of tensor network 
matters when the operators such as A  and 0 /2He τ−  are 
applied to the state. RPPS is expressed as  

 

( ) ( ) ( )1 2 [ ][1] [2]1 exp exp exp NNi i i
M

σσ σθ θ θΨ = ∑
σ

σ  

 (28). 
Random phase number is used so that statistical fluctuation 
from diagonal matrix element is suppressed. However, 
other i.i.d. random numbers such as Gaussian random 
number will work as well. 
The fluctuation of the matrix element (13) with RPPS 
decreases as  
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as system size N increases, which is much slower than 
(18) for the full Hilbert space representation. RPPS can 
be also regarded as the random matrix product state 
(RMPS) in Ref. [7] with 1χ =  and is analogous to 
classical product state (CPS) in minimally entangled 
typical thermal state method (METTS) [20, 21].  

Thermal MPS state is defined with RPPS as  
 /2( ) He ββ −Ψ = Ψ   (29) 

and the thermal average of physical quantity A is 
expressed as 
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 (30) 
where A  and H  are matrix product operators (MPO) 
[4]. 

In numerical calculation, the canonical ensemble 
average (30) is calculated as shown in Fig. 3 (a). 
Manipulation of MPS is taken care of by numerical 
library ITensor [22]. First, an initial RPPS is generated. 
Second, the thermal state

0 /2( ) ( )( )
LHi ie τβ − Ψ = Ψ   is calculated by 

repeatedly applying Boltzmann MPO [23], 0 /2He τ− , with 



small imaginary time step 0 / Lτ β= , where L is a large 
integer. Entanglement may be increased by the 
application of operators and the resulting MPS may 
require larger bond dimensions to satisfy the required 
cutoff error condition. Such automatic control of bond 
dimension is taken care of by iTensor. The shifted and 
scaled Hamiltonian 

 ( )H a H c= −   (31) 
is used in the program for numerical convenience. The 
constants a>0 and c are determined so that all 
eigenvalues of H  lie in the range [0, 1]− . Third, 
expectation value of the observable 

( ) ( ) ( )( ) ( )i i iA Aβ β= Ψ Ψ  and partition function 

( ) ( ) ( )( ) ( )i i iZ β β= Ψ Ψ  are calculated. After 

averaging with sampleN  initial random states, the 
canonical average of the observable at inverse 
temperature β  is obtained as  
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The accuracy of RPPS method is controlled by the 
number of initial RPPS, sampleN , scaled imaginary time 

step 0τ , cutoff parameter of SVD, cutoffε [19]. The 
accuracy of RPPS method for the Heisenberg chain up to 

14spinN =  with 10000sampleN = , 0 0.02τ = , 
1310cutoffε −=  has been confirmed within statistical 

error of 410−  in comparison with the results of the direct 
method[24].The accuracy of 100spinN =  calculation 

with control parameters 100sampleN = , 0 0.02τ = , 
1010cutoffε −= was confirmed  within statistical error of 

410−   in comparison with the result of METTS method 
using the same control parameters. In Fig. 2, the average 
energy and the maximum bond dimension are shown as a 
function of inverse temperature. It is noted that relatively 
small bond dimension of 10χ    is sufficient for 
converged results.  

 
 

 

 
Fig. 2. Temperature dependence of (a) average energy, 
and (b) maximum bond dimension for 100 site spin-1/2 
antiferromagnetic Heisenberg chain with open boundary 
condition and control parameters 100sampleN = , 

0 0.02τ = , 1010cutoffε −= . 
 
 

Many other numerical methods are known for thermal 
calculation of tensor network state. Among them, Matrix 
Product Purification method [19, 25, 26] utilizes 
augmented sites (or ancilla) and poorly scale to large 
systems at low temperature. RMPS studied by Garnerone 
[7] reduces to RPPS when 1χ = . METTS method  [20, 
21] scales to large systems even at low temperature. The 
similarity of algorithm of RPPS method and METTS 
method are demonstrated in Fig. 3. In this sense, RPPS 
method is algorithm of new generation that has inherited 
gene from both RMPS method and METTS method. 
RPPS method has better parallelization efficiency than 
METTS method because it has no sequential loop. In 
addition, RPPS method can calculate thermal averages at 
intermediate inverse temperatures 0l lβ τ= , where 

1, 2,3, , 1l L= − , as the byproducts of the calculation 

at 0Lβ τ= . Unlike METTS method, RPPS method does 
not have problems related to the ergodicity of sampling 
because it calculates the trace over the entire Hilbert 
space as shown in (13). As METTS method does, RPPS 
method starts with an initial product state and the bond 
dimension is increased during imaginary time evolution 
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as cutoff accuracy requires, which makes RPPS method 
numerically more efficient than RMPS method. 
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Fig. 3. Flow chart of (a) Random Phase Product State 
(RPPS) method and (b) Minimally Entangled Typical 
Thermal State (METTS) method [20, 21]. Sequential 
loop is designated with bold line. 
 
 

Since the program for RPPS method with Heisenberg 
chain model is written in C++ language using hybrid-
parallelization with OpenMP thread parallelization for 
ITensor library and MPI process parallelization for the 
initial RPPSs, the program will run extremely efficient on 
PC clusters and supercomputers such as FUGAKU. The 
source code will be submitted to ITensor website [22] 
and MateriApps website [27] after the publication of this 
paper. 

For large and almost homogeneous systems, 
macroscopic quantities calculated with random state 
method in the full Hilbert space representation sometimes 
converge extremely rapidly and calculation with only one 
random state provides a good approximation. This super-
convergence has been discussed in terms of typicality [7-
12]. Derivation of random state methods in this article 
also emphasizes the self-averaging [14, 19] due to the 

random phase on the off-diagonal matrix elements in 
(13). 

In summary, we have introduced a numerical method 
that is useful for calculating canonical ensemble average 
in tensor network representation. 
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